Class IX Chapter 15 - Probability
 Maths

Exercise 15.1 Question 1:

In a cricket math, a batswoman hits a boundary 6 times out of 30 balls she plays.
Find the probability that she did not hit a boundary.
Answer:
Number of times the batswoman hits a boundary $=6$
Total number of balls played $=30$
\therefore Number of times that the batswoman does not hit a boundary $=30-6=24$
P (she does not hit a boundary) $=\frac{\text { Number of times when she does not hit boundary }}{\text { Total number of balls played }}$

$$
=\frac{24}{30}=\frac{4}{5}
$$

Question 2:
1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl

Also check whether the sum of these probabilities is 1 .
Answer:
Total number of families $=475+814+211$
$=1500$
(i) Number of families having 2 girls $=475$

$$
\begin{aligned}
P_{1}(\text { a randomly chosen family has } 2 \text { girls }) & =\frac{\text { Number of families having } 2 \text { girls }}{\text { Total number of families }} \\
& =\frac{475}{1500}=\frac{19}{60}
\end{aligned}
$$

(ii) Number of families havina 1 airl $=814$

$$
\begin{aligned}
\left.P_{2} \text { (a randomly chosen family has } 1 \text { girl }\right) & =\frac{\text { Number of families having } 1 \text { girl }}{\text { Total number of families }} \\
& =\frac{814}{1500}=\frac{407}{750}
\end{aligned}
$$

(iii) Number of families having no girl $=211$
P_{3} (a randomly chosen family has no girl) $=\frac{\text { Number of families having no girl }}{\text { Total number of families }}$

$$
=\frac{211}{1500}
$$

Sum of all these probabilities $=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}$

$$
\begin{aligned}
& =\frac{475+814+211}{1500} \\
& =\frac{1500}{1500}=1
\end{aligned}
$$

Therefore, the sum of all these probabilities is 1 .

Question 3:

In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.

Answer:
Number of students born in the month of August $=6$
Total number of students $=40$
P (Students born in the month of August $)=\frac{\text { Number of students born in August }}{\text { Total number of students }}$
$=\frac{6}{40}=\frac{3}{20}$

Question 4:

Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Answer:

Number of times 2 heads come up $=72$
Total number of times the coins were tossed $=200$
$\mathrm{P}(2$ heads will come up $)=\frac{\text { Number of times } 2 \text { heads come up }}{\text { Total number of times the coins were tossed }}$

$$
=\frac{72}{200}=\frac{9}{25}
$$

Question 5:

An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income (in Rs)	Vehicles per family			
	0	1	2	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen, find the probability that the family chosen is (i) earning Rs 10000 - 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 - 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Answer:
Number of total families surveyed $=10+160+25+0+0+305+27+2+1+$
$535+29+1+2+469+59+25+1+579+82+88=2400$
(i) Number of families earning Rs 10000 - 13000 per month and owning exactly 2 vehicles $=29$

Hence, required probability, $P=\frac{29}{2400}$
(ii) Number of families earning Rs 16000 or more per month and owning exactly 1 vehicle $=579$

Hence, required probability, $P=\frac{579}{2400}$
(iii) Number of families earning less than Rs 7000 per month and does not own any vehicle $=10$

Hence, required probability, $P=\frac{10}{2400}=\frac{1}{240}$ (iv) Number of families earning Rs 13000 - 16000 per month and owning more than 2 vehicles
$=25$
Hence, required probability, $\mathrm{P}=\frac{25}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicle $=10+160+0+305+1+$
$535+2+469+1+579=2062$
Hence, required probability, $\mathrm{P}=\frac{2062}{2400}=\frac{1031}{1200}$

Question 6:

A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to
group them into intervals of varying sizes as follows: 0 - 20, 20 - 30... 60 - 70, 70 100. Then she formed the following table:

Marks	Number of student
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
$70-$ above	8
Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Answer:
Totalnumber of students $=90$
(i) Number of students getting less than 20% marks in the test $=7$

Hence, required

$$
P=\frac{7}{90}
$$

(ii) Number of students

$$
\mathrm{P}=\frac{23}{90} \text { obtaining marks } 60 \text { or above }=15+8=23
$$

Hence, required probability, Question 7:

To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like dislike	135
65	

Find the probability that a student chosen at random (i) likes statistics, (ii) does not like it Answer:

Total number of students $=135+65=200$
(i) Number of students liking statistics $=135$
$\mathrm{P}($ students liking statistics $)=\frac{135}{200}=\frac{27}{40}$
(ii) Number of students who do not like statistics $=65$
$\mathrm{P}($ students not liking statistics $)=\frac{65}{200}=\frac{13}{40}$

Question 8:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows.
$5 \quad 3 \quad 102025111371231$

1910121718113217162

| 7 | 9 | 7 | 8 | 3 | 5 | 1215183 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 12142 | 9 | 6 | 15157 | 6 | 12 | |

What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within $\frac{1}{2} \mathrm{~km}$ from her place of work?

Answer:
(i) Total number of engineers $=40$

Number of engineers living less than 7 km from their place of work $=9$
Hence, required probability that an engineer lives less than 7 km from her place of
work, $P=\frac{9}{40}$
(ii) Number of engineers living more than or equal to 7 km from their place of work $=$ $40-9=31$

Hence, required probability that an engineer lives more than or equal to 7 km from
her place of work, $\mathrm{P}=\frac{31}{40}$
(iii) Number of engineers living within $\frac{1}{2} \mathrm{~km}$ from her place of work $=0$

Hence, required probability that an engineer lives within $\frac{1}{2} \mathrm{~km}$ from her place of work, $P=0$

Question 11:

Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg):
4.975 .055 .085 .035 .005 .065 .084 .985 .045 .075 .00

Find the probability that any of these bags chosen at random contains more than 5 kg
of flour.

Answer:
Number of total bags $=11$
Number of bags containing more than 5 kg of flour $=7$
Hence, required probability, $P=\frac{7}{11}$ Question
12:

Concentration of SO_{2} (in ppm)	Number of days (frequency)
$0.00-0.04$	4
$0.04-0.08$	9
$0.08-0.12$	2
$0.12-0.16$	4
$0.16-0.20$	2
$0.20-0.24$	30
Total	2

The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval $0.12-0.16$ on any of these days.

Answer:
Number days for which the concentration of sulphur dioxide was in the interval of
$0.12-0.16=2$
Total number of days $=30$
Hence, required probability, $\mathrm{P}=\frac{2}{30}=\frac{1}{15}$ Question 13:

Blood group	Number of students

A	9
B	6
$A B$	3
O	12

Total	30

The above frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Answer:

Number of students having blood group $A B=3$
Total number of students $=30$
Hence, required probability, $P=\frac{3}{30}=\frac{1}{10}$

